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and bounds on cacacity are obtalned for a class of nonGaussian channels.
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constraint is partially given in terms of an increasing family of finite-

dimensional subspaces.

A general expression for the capacity is obtained,

which depends upon the relation between the noise covariance and the
constrain: on the generalized signal-to-noise energy ratio for the code words.
The: well-known expression for capacity of the discrete-time stationary

Ga: ssian channel is shown to be a special case. The general expression
provides new results on capacity for nonstationary discrete~time channels and
fo- continuous-time channels (stationary or nonstationary) with fixed time of
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Introduction

Coding capacity of additive Gaussian channels with memory is one of the

major areas of open problems in basic information theory. Even for the case
of the stationary discrete~time channel with a simple energy constraint, only
recently has a complete proof been given [15] for the information capacity,
which one can then apply toward a rigorous and complete proof of the coding
capacity. For nonstationary discrete-time and continuous-time channels with
or without memory, there are apparently no published results on coding
capacity.

Moreover, in the classical contisuous-time channel, the model for which
results have beex known constitutes a proper subset of the class of stationary
channels, and there is a very large universe of stationary channels not
belonging to this subsat.

This paper gives results on coding capacity for a large class of
channels, which may be stationary or nonstationary, with or without memory.
The formulation is somewhat different and more general than that usually
followed. The generality permits one to focus on channels where
dimensionality of the code word set is a key component of the constraints. In
the classical setup, the elements of a code are limited in their time
duration. The present paper replaces this with a constraint defined by an
increasing family of finite-dimensional subspaces. The classical discrete-
time channel is then a special case of this framework, and several
applications to these channels are given. These applications include
nonstationary single-user and multi~user channels. For example, it will be
seen that this formulation shows that it is possible to use a code word set of
arbitrari.:y large cardinality as transmission time n - ®, with the maximum

decoding error probability converging to zero, while the classical analysis
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gives zero capacity and a maximum decoding error of one for any non-zero rate.

Another interesting result, for the memoryless non-stationary Gaussian
channel, is that the noise covariance can have eigenvalues of infinite
multiplicity which have no effect on coding capncity.

The approach also provides results for continuous-time channels. In the
classical continuous—~time channel, the transmission time T is permitted to be
arbitrarily long in determining capacity. Then, by transmitting at a rate
below capacity and for a sufficiently long time, the coder has the ability to
use an arbitrarily large code word set while achieving arbitrarily small
maximum decoding error probability. In this formulation, transmission rate is
the rate of increase in the log of the cardinality of the code word set, as
the transmission time is increased.

Suppose, however, that the transmission time T is limited, as will
ordinarily be the case in practice. One may then ask: if arbitrarily large
transmission energy is available, is it possible to choose a code word set of
arbitrarily large cardinality while achieving arbitrarily small maximum
decoding error probability? The mechanism for accomplishing this, if it is
possible, will consist of using an increasingly-complex coding-decoding
structure. This can be interpreted as an increase in dimensionality of the
code word set. The "rate” of transmission is now the rate of increase one
obtains in the log of the cardinality of the code word set as its
dimensionality is increased. A higher rate implies that the coding-decoding
structure can be less complex for a specified cardinality of the code word set
and a specified maximum error probability.

It is shown here that for some such channels it is not possible to
achieve arbitrarily small maximum decoding error probability when using code

word sets of arbitrarily large cardinality, for any positive rate. A special
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case of these channels is the Holsinger-Gallager model of the stationary

Gaussian channel analyzed in [11] (when the time duration is fixed).
Moreover, for such channels it is shown that any non-zero rate leads to a
maximum decoding error probability of one. However, for a large class of
continuous-time channels of fixed time duration, it is possible to achieve
arbitrarily small decoding error probability with code word sets of
arbitrarily large cardinality; those channels are characterized. a number of
examples are given, and their capacity is obtained.

Upper bounds on coding capacity are obtained for a large class of
nonGaussian channels. Several examples are included. For the class of
channels considered, it is shown that coding capacity is equal to information
capacity when the noise is Gaussian. Apparently, this has only recently been
explicitly stated for the classical discrete-time channel (with memory) [8].

Emphasis here is on obtaining the capacity. However, Theorem 2 gives
bounds on error probability for Gaussian channels based on results of Ebert
[10] and Gallager [11].

In addition to obtaining specific new results for coding capacity of a
large class of additive channels, the development brings out the essential
importance to the capacity of the limit points of the spectrum (the essential
spectrum) of the operator defining the relationship between the noise
covariance and the energy constraint on the code words.

The proof of the general expression for the capacity is based on the
spectral theory for self-adjoint operators in Hilbert space, including the
integral representation (as given, for example, in [17]). That proof. and
those of several other necessary mathematical results, is contained in [6].

The emphasis here is on applications.
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Problem Framework

In the next few sections, the setting and definitions for the coding
capacity problem will be given. In order to illustrate these concepts and
definitions, the classical discrete-time channel will be frequently employed.

It is assumed that the noise sample paths belong to a real separable
Hilbert space H, where H has inner product <+,+> and associated norm ii*ll. The
noise is described by a set function N My will be a finitely-additive

probability defined on the cylinder sets of H: the collection of all sets of

the form {x: ((x.u1>,....<x.un>) € Dn). where n 2 1, Dn is a Borel <et in R",
and Uj.....u are any n elements of H. Thus, if Ho is any finite~dimensionai
subspace of H, and PO is the projection operator in H having range HO' let Ho

be defined on the Borel sets of HO by uO(A) = uN{x: Pox € A}. By 1s then a
countably-additive probability. Our basic assumptions on the noise are that

a) IH<x.y>2duN(x) ( ®» all y in ll, and

b) IH(x.y>duN(x) = 0 for all y in H.

Assumption (a) means that HN has a covariance operator RN' which is
linear, bounded, and non-negative, and also implies that the noise mean
exists. Assumption (b) is that the noise has zero mean. We can assume WLOG
(without loss of generality) that RN is strictly positive on H. RN is defined
as <Ryu.v> = fH<u.x><v.x>duN(x) for u,v in H.

My is Gaussian if for any y € H the distribution function Py is Gaussian,.

Py(a) = uN(x: {x.y> € a}.

Formulation of Constraints

Let Rw be a strictly positive covariance operator in H satisfying
% %
range(Rw) C range(RN).

(Hn), n 2 1, will denote a family of finite-dimensional subspaces of H,
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such that for all n 2 1,
a) Hn c Hn+1
b) dim(Hn) = n.
Let ﬁn be the projection operator with range equal to Hn' and define
RW.n = PnRWPn’ RW.n is then strictly positive on Hn. For x in Hn. the norm
Ixil is defined by lixll

¥.n W.n
NP % 4 . .
satisfies RW.ny = x. Formally, we write Hwa'n = HRw'an for x in Hn'

= llyll, where y is the unique element of Hn that

al though R;%n does not exist on H, it is well-defined on Hn'
The constraints on the code words are now as follows: For eachn > 1,

2
i W.,n $ nP

the admissible code words xl""'xK(n) belong to Hn and satisfy lix I
for i =1,2,....K(n).

As an important example of such constraints, consider the classical
discrete-time mcmoryless channel with a simple energy constraint. This can be

formulated in the above terms by taking H = 82 and Rw the identity, giving

Hn = {x in & X, = O for i > n}

2:

Hx"2 = x?

W.n

i M3

for x in H .
n

i=1

Another example involves the continuous-time channel with fixed
iransmission time, T. In this case, H can be taken as L2[O,T], and Hn as the
linear span of {el.ez.....en). where (en. n 2 1} is an infinite orthonormal
set in L2[0.T]. It will always be assumed that a process with paths in
L2[0.T] is product-measurable.

It can be noted that for channel capacity calculations the constraint

2

lellw n { nP (for code words in Hn) for every n is equivalent to the constraint
2

1
limsup = lixll < P.
n ¥.n
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Definition of Cuoding Capacity

Let (Hn. Il-llw n) define the constraints. Let HN be the noise probability
on H, and let u; be the probability on Hn induced from My by the projection

operator ﬁn: u;[A] = uN{x: ?nx € A}, for A any Borel set in Hn‘ It is not

required that N be countably additive; thus, for example, the discrete-time
memoryless stationary Gaussian channel is included in this formulation.

For fixed n > 1, a code (k.n,e) [1] is a set of k code words {xl.....xk}
and k disjoint Borel sets in Hn such that the elements of (xl.....xk} obey the
constraints, and

by ﬁny +x, €C}21-efori=12..k

Note that this last probability inequality can be written as

m(y: y+x €C}21-e 1=12.. .k

A real number R ? O is an admissible rate if there exists an infinite

n R
sequence of codes ([e 1 1. n,.e ) with e, *0as i - where [r] is the
i i

integer part of the real number r.
The coding capacity is then the supremum of the set of admissible rates.
As can be seen, this definition of coding capacity contains that of the
classical discrete-time channel as a special case, defining the constraint
family (Hn. ”."W.n) as in the previous section. More generally, the capacity
gives an indication of the effect on size of the code word set that can be
obtained by increasing the dimensionality of the code word set, while

requiring that liminf €, = 0.
i

The constraint on the transmitted signal is given in terms of a
L

covar.ance operator Rw in H. A basic assumption is that range(R;) contains

i
range(R;). The existence of such an operator, and the assumption on range
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relations, are necessary in order that the information capacity be finite [5]:

moreover, when My is Gaussian, it will be seen that finite information
capacity is necessary in order to have finite coding capacity. Thus, the
formulation of the problem is quite general (so long as an average-type

constraint is to be used)}. Under this assumption, there exists a self-adjoint

operator S in H such that Ry = R%(I+S)R$. where (I+S)"1 exists and is bounded
(see [5, Prop. 1] for ramifications of this fact). The limit poinis of the
spectrum of S will play a key role in this paper. These limit points (the
essential spectrum of S) consist of all eigenvalues of infinite multiplicity,
all limits of sequences of distinct eigenvalues, and all points of the con-
tinuous spectrum [17, p. 363]. "Essential spectrum” is the modern terminology
for this set; it will be denoted by aess(S). The continuous spectrum of S
consists of all real numbers A such that the range of (S-AI) is not closed.

In many applications, the constraint will be given by a time-invariant

linear filter f with transfer (frequency) function f. In such cases, if|2

defines a spectral density and thereby the operator RW'

Expressions for Evaluation of the Coding Capacity

The noise has probability My and covariance operator RN. u; is the noise
probability on Hn, defined by uS(C) = uN(xi ?nx € C} for C a Bore!l set in Hn.
Rw is the covariance operator defining the constraint on the code words.

RW.n = PnRWPn and RN.n = PnRNPn. Let In be the identity in Hn; let Sn be the

. % %
self-ad joint operator mapping Hn into Hn defined by RN.n = RW.n(In+sn)RW.n'
HSan = 0 {f x is orthogonal to Hn' Since Sn is self-adjoint as an operator
in Hn' it has n orthonormal eigenvectors belonging to Hn with corresponding
eigenvalues B? < Bg < ... ¢ ﬂz.

Absolute continuity of probabilities will be frequently encountered. If
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1 and v are two finitely-additive functions on the cylinder sets of H, then
u << v and p ~ v will denote, respectively, absolute continuity of u w.r.t. v
and mutual absolute continuity of u and v. p << v if and only if for every
e > O there exists 0 > O such that v(A} < 6 => u(A) < € for any cylinder set A
i H.

The bound on coding capacity for nonGaussian channels will involve the
relative entropies HGN(N) and (HEN(N)' nyi}. let Hen be the Gaussion noise
measure (perhaps not countably additive) having covariance operator RN' In

n n .
this framework, the definition is HGN(N) = sup_ HGN(N)‘ where HGN(N) is the

n

\
dZNJdu;. 3 course,
ducn

entropy of u; with respect to ugN: HEN(N) =J n[log
R

n n n . .
HGN(N) = o jf My is not absolutely continuous with respect to Hon:  HN € By

is necessary in order to have HCN(N) finite, where pu' denotes the restriction

of y to the closed linear span of U Hn'
n2l
The relative entropy HEN(N) can be defined in terms of differential

entropy for the discrete-time channel. Suppose that N = (Nl'N2 ..... Nn) has

zero mean and a probability density p;. Then, du;l/dugN exists, since Lebesgue

measure and nondegenerate Gaussian measure are mutually ~h~slutely continuous

n

c~ R . The differential entropy is

HY(N) = S allos Py (x) Ipy (x)dA" (x)

n n
where A denotes Lebesgue measure on R'. Thus,

n
diey

duy "
H(N) = - fmn[‘"g ;;é;(x)]du:(z) - Imn[log — 4

i

- Hon(N) + HY(GN).
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so that H&(N) = H'(GN) - H*(N).
The re!. ive entropy will enable us to give an upper bound for

nonGaus- an channels such that lim %-HCN(N) { ®. The bound will be seen to be
n

equal to the capacity for the Gaussian channel with noise probability Han

whenever lim %-HEN(N) = 0. A particular case of this is when HGN(N) e To
n

illustrate that this occurs in some important applications., suppose that

H = L2[O,T] and that My is defined by 2 mean-square continuous stochastic
process (Nt)' Suppose also that (Nt) = (Vt+St), where (Vt) is a m.s.
continuous Gaussian process and (St) is a process independent of (Vt) and such
that the paths of (St) belong (w.p. 1) to the RKHS of the covariance of (V[).
Supnose also that the Gaussian process with the (St) covariance has sample
paths in the RKHS of the covariance of (Vt). w.p. 1. Then, HGN(N) (o,

This result is a special case of the following.

Prop. 1. For any choice of (Hn)' HGN(N) <{ ®» in each of (a) - (d) below.

(a) My is Gaussian with covariance Rv. Mg has covariance RS = RéTRt
for T trace-class, and Hy = HyMug (convolution).

(b) H= 82 or H = L2[O,T]. V is a Gaussian process with sample
paths a.s. in H and covariance operator RV' S is a possibly non-Gaussian
process independent of V with sample paths a.s. in H and with covariance
operator RS. N=S+V, and RS = R:TR: for T trace-class.

{c) V. S. and N are as in (b), S' is the Gaussian process with the
same covariance function as S, and the paths of S' belong to range(Ré)
with probability 1.

(d) H = L2[O,T]. S. V., and N are defined as in (b), V and S are

wide-sense stationary and have rational spectral densities ¢v and ¢S‘ and

©

[+
I 2NN ¢,
o by
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Proof. (b) and (c) are equivalent {2]. (d)} is a special case of (b) (2. 13].

(b) is obviously a special case of (a). The proof will be given for (a).
writing My 3S Hg,y- Let uVOf;l(A) = uv(y: x+y € A}. where x € H and
fx(y) = x +y. The following statements follow from [2]:
-1

a) uVOfx ~ Hy a.e. dus(x)

P) my by

c) My ™~ Hgy

Consider now the channel with additive Gaussian noise Hy and let its
information capacity C(P) be sup I(uXY). where the sup is over all

probabilities such that range( %)] =1and E HxH2 ¢ P, where lixll, =
Hx Hx ST N

IRl The map g (x.y) = [(duyof, ')/du,(y) is BIHT<BLHI/B[R] measurable

[4). For any My satisfying the constraint, we have [3] I(uXY) =

% Trace R;%RXR;% - HV(X+V). Trace R;%RXR;% ¢ P, from the constraint. Since

I(uXY) 2 0, this requires HV(X+V) {®, Finally, since N = X + V,

o = [l o - [lior 52 - o

1,0 + [[tor oy < myon » Jfron sy

Since Hy and Hoy are mutually absolutely continuous and Gaussian, HCN(V) { o,

Hence, HGN(N) C o, D

The model just described arises in one of the most frequently-encountered
nonGaussian situations: when the medium contains additive narrowband
nonGaussian noise (St) that is independent of the additive wideband Gaussian

receiver noise (Vt). The above case applies, for example. if the receiver

noise is stationary with spectral density ¢(A) = 1/(A2+02), and the ambient
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medium noise is stationa,y and nonGaussian with spectral density

¢1(R) = 1/B(A). where B(\) is a pol;nomial of order 2 4.

Consider now the finite-dimensional channel defined as foliows. The
additive noise has probability p;. The input to the channel is described by a
2

probability on H , satisfying E |ixil ¢ nP. Let (1:P) be the
Hx n My V.rn

information capacity of this channel. Tha follcwirng well-known result is

fundamental to our results.

Lemma 1 [11, 14].

N(n) M)
43 10 BOIL] ¢ chnpy <% 3 1og[BB;‘ 4

3
i=1 B?+1 i=1 i

where B? < Bg < ... ¢ 62 are the eigenvalucs of Sn' N(n) = sup{i ¢ n:

3? < B(n)}. and B(n) is defined by

N(n)
P = 2z
i=1

=N

(B(n) - B}).

Preliminary Results

Our program is to first obtain expressions for lim %-Ca(np). This will
n

then be followed by the result that the coding capacity is equal to

lim % C;(nP) when My is Gaussian and that this value is an upper bound for
n

coding capacity for the nonGaussian processes satisfying lim % HgN(N) = 0.
n

Among the difficulties in evaluation of lim %'CS(nP) is that for each value of
n

n one obtains an expression in terms of the eigenvalues of the operator Sn'
The range of Sn is contained in Hn; Sn always has a complete orthonormal set

of eigenvectors, and its range space has d‘mension { n. Moreover, the
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eigenvalues of Sn need not be contained in the set of eigenvalues of Sn+ in

1;

fact, the eigenvalues of Sn+1 may not Include a single eigenvalue of Sn'

The desired result is an expression for capacity in terms of the operator
S, where RN = Rz(I+S)R3. and the increasing subspaces (Hn)' This requires
that one first determine relations between S and Sng and in particular,
between the spectral properties of the two operators. Some idea of the
complexity of this procedure may be gained by observing that, in general, S
need not have any eigenvectors. Examples of such S include the following:
H = 82 (discrete-time channel) with S a Toeplitz matrix:; H = L2[O.T]. with
[Sx](t) = trx(t) a.e. dt, some real number r > O.

In [6], 1t is shown that Sn = vnsvz. where Vn is a partially isometric
operator. V_ is isometric on range( %ﬁ ). zero on [range( %$ ]'L and its

’ n RW n’’ RW n- °

- Yo n
range is equal to Hn. Let Hwn = range(Ran). The eigenvalues (ﬁi) of Sn and

their multiplicity are then the same as those of the operator Pw SPw . where
n n

Pw is the projection operator with range equal to Hw [6].
n n

(ei. i 2 1} will be used to denote an o.n. set in H such that Hn =
span(el,....en}. Similarly, {ui. 1 2 1} will denote an o.n. set such that
HWn = span{ul.....un}. Note that one of these sets is complete for H if and
only if the other is complete; completeness is equivalent to Han - xll >0 for
all x in H.

Since V_ is an isometry from HW to H , it follows that V u, = e, for
n n n ni i
i { n. This is obviously true for n = 1; suppose that it holds for n = K.

Then, since Hw C Hw
K

ol and HK C HK+1' the statement must hold for n = K+1,

thus for all values of n.
Let n be fixed and define Gn(k) = %-[# eigenvalues of Sn < A]J. G“ is a

lef t-continuous non-negative step function, bounded above by 1. The family
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{Gn. n 2 1} will be seen to completely define (for a given set of constraints)
the coding capacity. The importance of aess(s) to characterizing (Gn, n 2 1}
is demonstrated in Prop. 2 below. First, let V[S.(Hn)] be the set of all + in
R such that for any K and any e > O, there exists n ?» K such that the number

of elements in the sequence (ﬁ?) satisfying IB? - 1[ (e is ) K.

To see that the set V[S,(Hn)] determines lim %-[# eigenvalues of Sn < AT

n
let A be fixed. Then lim Gn(k) = lim %-25_1 [# eigenvalues of Sn in
n n
[Ai.hi+l)]. where -1 = Al < ... & AK+1 = A. If 1;m Gn(k) > 0. then there

exists at least one Ai < N such that lim % [# eigenvalues in [Xi.Ai+1)] > 0.
n

This requires that [*1'“1+1) contain at least one point in V[S, (Hn)]. Thus,

for any A, lim Gn(A) is determined entirely by those ¥ < A such that
n

1

im % [# eigenvalues of Sn in (v-e, v+e)] > O for every € > 0, and any such ~
n

must belong to V[S, (Hn)].

Prop. 2 [6].

(1) Suppose that {un. n 2 1} is a c.o.n. set for H. Then
aess(S) C V[S.(Hn)].

(2) Let GL and BU denote the smallest and largest points in oess(S).
Then V[S.(Hn)] C [BL.BU].

The results of Prop. 2 might lead one to hypothesize that

V[S,(Hn)] C aess(S). that V[S,(Hn)] = aess(S) when {un. n 2 1} is complete,

and that lim % [# eigenvalues of Sn < A] is independent of the choice of any
n

c.o.n.s. (un. n 2? 1}. These three properties would be very useful.
Unfortunately. all three are false, in general, although the first two will

hold for some important choices of (Hn)'

Cod.Cap.of CACs-Liss-36 - 10/9/89 - 13




Prop. 3 [6].
(1) If {un, n 2 1} is not complete for H, then V[S.(Hn)] N aess(S) = ¢

is possible.
(2) If {un. n 2 1} is complete for H, then:
(a) V[S.(Hn)] C aeSS(S) is not always true.
(b) Let QA(S.(Hn)) be the eigenvalues ﬁl; of Sn such that
67-x| 2 4 > 0 for all x tn o___(S). Then Tim L Q,(S.(H_)) can
be strictly positive.

(c) If {un. n 2 1} is complete for H, then lim :-1 {# eigenvalues of
n

Sn > A} need not be independent of the choice of {un. n > 1}.

Coding Capacity

The following theorems give a general result for coding capacity. See

 [6] for the proof of Theorem 1 and the Corollary.

Theorem 1.
—_— By B,t1 —1
(1) Tim% J_] log[—ﬁ-i-]an()\) < Tim c";(np)
— Bn Bn+1 1 n
< lim %[.f_l log[—rﬁ]d}?n(k) * = HGN(N)]
. on Bt —1.n
<Tim% J_ log[——]d}’-‘ (A) + Tim = H2 (N)
1 A+l ' n o D GN
B
where Bn is defined by P = J'_l (Bn-)\)an(A)
1
and Fn(k) == {# eigenvalues of Sn < A},
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(2) If lim l-C{v‘(nP) > 0, and lim %-(# eigenvalues of Sn < A} exists for
n

n n—o

all A in R, then

B
% f_ log[1+A]dF(k) < lim -C;(nP)
<% 52 log[$221dF () + Tim L 12 (N
n

where F is a distribution function defined by

F(A) = lim {# eigenvalues of S_ < A} = lim F_(A).
o n n n—o n

and the constant B is defined by
P = J‘}EI[B—A]dF(A).

(3) If 1; = %(N) = 0, then lim —c;?(np) 0 if and only if

Tim %-{# eigenvalues of S C A} =0 for all A in R. This requires
n—x

that S be unbounded and occurs in particular if +» is the only limit

point of o(S).

Remarks. (1) In part (2), the same result holds if F(A) = lim Fn(k) exists
n-¥o

for all A ¢ B, where B is defined by P = I?l[B~R]dF(A).

(2) In the statement of Theorem 1. the probability distributions
(Fn. n 2 1} could be replaced by (Gn. n 2 1}, where Gn = %{# eigenvalues of Sn
strictly less than A]. This follows because the integrands are continuous

functions., and are zero at the upper limit of the integral.

Dl'-'

Corollary. If 1im

HEN(N) = 0, then bounds on lim —-C;(nP) are given by
n n

% log(1 + PAA_) ¢ mltg(np) < % log(1 + PAA_ )

n
n
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where A is the smallest limit point in the spectrum of S, and A is
min max

the largest. Morecver, these bounds can be sttained by proper choice of

(H ).
An alternative form of Theorem 1 can be given, as follows.

Theorem 1A. Suppose that B is the largest number such that

B
P> 1im J [B -AJdF (7). Then
-1

n
___ B B +1 —_—
1:1: J_| log >\+1 dF_(A) ¢ 1rilm ;c@(np)

< lim[{ log[§+:1]dF (A) + —-HGN(N)]

where (Fn) and (Bn) are defined as in Theorem 1. If no such B exists,

— 1 —1
and 1rilm ~ H’(;N(N) = 0, then 111‘m = cs(nP) =

The following result, together with Theorem 1 (and 1A), gives the coding
capacity. Part (b) of this theorem can be proved from first principles,
beginning with Feinstein's Lemma. However, Theorem 1 enables a proof to be
given based upon results due to Ebert [10] and Gallager [11]. This approach

not only shortens the exposition, but also provides error bounds.
Theorem 2. Let C;(P) be the coding capacity.

(a) C;(P) < TTE'%-C;(nP): when My is Gaussian and C;(P) = 0, then the
n

maximum decoding error probability is equal to one for any rate > O

(i.e., liminf e = 1).
n

(b) If py is Gaussian, then Cy(P) = Tim + Co(nP).
n

c) Suppose that is Gaussian. Then, for any fixed n, the maximum
My
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decoding error probability €n is bounded by

e < [2$56]2 exp [-T[R(B[r.p])]

n

where 0 < p < 1, s = p/(2[1+p]>(1 + B{n.p]). 6 can be taken equal
to 1/s, and n is an integration-normalizing constraint [11].

B{n.p] is defined by

N(n.p) (1+p)*(B[n.p]-B})(BLn.p]+1)

2
=1 (1+p)(1+B[n.p]) - p(1+B])

|
=N

i

N(n.p) = sup{i < n: B} < B[n.p]}

and

N(n.p) [ 1+B[n,p]

_ pnP
"IREIn-P1)] = SrTemrn. oy(reey * % 2, 1o (1+p) (1+B[n.p]-p(1+p%)1
1

The corresponding number of code words is [eR(B[n.p])]. where

N(n.p)
R(B[n.p]) = % e log M].

i=1 B!;'l'l

Proof. The fact that lim ;ll-C.;(nP) is always an upper bound on coding capacity
n

follows by a standard application of Fano's inequality:; see, for example. p.

168 of [16]. The resulting inequality for a code (kn.n.en) is e 2

C‘{;(nP) + log 2 1
1 - . This gives lim = (#(nP) as an upper bound on capacity.
log kn n M

Suppose now that Uy is Gaussian, and assume that (b) of the theorem holds. If

C;(P) = 0, then for any positive number R, %%(np) < R for all sufficiently

large n, so that lim %‘-C{"(nP) = 0, giving e, 1 for any positive rate R.
n
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To obtain the lower bound for C;(P) when My is Gaussian, one can apply
the results of Ebert [10], [11]. They involve a vector channel, consisting of

a set of n parallel one-dimensional Gaussian channels where the noises in the

different channels are mutually indeperndcnt with variunces B?. i {n. The

code words are vectors x which satisfy the constraint 2? x? ¢ nP. With this

model, Ebert shows the existence of a code ([eR(B[n’p])].n.en), with R(B[n.p])

defined as in (c) of the theorem, and € obeying the upper bound given there.

N(n) n
3 [B() - A7),
i=1

T[R(B[n,p])] > O for p > O, and B[n,p] decreases (for fixed P) as p increases.

=N Lol

In those equations, p = O gives T[R(B(n))] =0 and P =

Thus, for every p > O, one has an admissible rate Rp. defined by

— — B[n.p]
Rp = lim %-R(B[n,p]) = (by Theorem 1) lim % [ 1og[§£§4§l%l}an(k).
n n -1

This gives a lower bound on capacity of

— B[n, P]
Tim R = 1im 1im % [‘—’L;—gll— aF_(\).
p0 P p0 n -1

B[n.p]
Since J 1 [QLQLEJ%l]an(A) is non-decreasing as p decreases for fixed n,

0
it follows that
B(n.O1 " rBrn.0]+41
Tim R <Timy% § log[ ~ ]dF (7).
+ 1 n
0 n -1

Moreover, if for A >0, B[n,0] + 1 - A > 0. B[n.p] = B(n.0) - A . then

B[n.0 B(n.
Tim [n ] [—ML]dF (A) - um [nfp]log[gL;—'ghli]an(}\)
n ~1
B[n, 0]

B[n,0]+1]
¢ T tog B0 tar (0) T o o] .

and since B[n,0] is bounded away from -1, we obtain
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___ B[n,0]
TimR =1im% J 1og[§f%'—8-];—1]an(>\)
p0 P n -1
. N(n)
where P= - 2 [B{n.0] - B?] and N(n) = sup{i ¢ n: ﬁ? < B{n,03}.
i=1
To apply this result, one proceeds similarly to [11]. For fixed n, the

2
¥.n

% . n
nP, where y is the unique element of Hn satisfying RW.ny = x. The noise My

channel considered here has code words in Hn constrained by Iixll = IIyII2 <
has covariance operator =r: (I +8S) A Thus, this is the same as

pe RN.n B Rw.n n n RW.n' ’
the Hn channel with code words L SFRERES N satisfying Hy"z { nP and with the
additive noise having covariance In + Sn. Expanding all code words and noise
sample paths in terms of the orthonormal eigenvectors of In + Sn' one obtains
a channel whose output is the sum of a vector of n independent parallel
Gaussian channels, with the outputs of the n channels being

h

mutually-orthogonal elements of Hn' The it channel has additive noise with

covariance operator (1 + B?)v?@v?. and the code words (yk) can be written as

n
Y = zr1)=13’k1"1 =1

channel when the code word Yy is selected. Since the individual channels have

, where 2? yii $ nP, ykiv? being the input to the ith parallel
outputs that are mutually orthogonal in Hn‘ the probability of correct
decoding for the summed output is the probability that all of the individual
channel sutputs are correctly decoded. The Ebert results thus apply, and part

(b) of the lemma is proved. Part (c) follows. a

Applications: Discrete-Time Channels

For the discrete-time memoryless Gaussian channel with Rw = I, the
theorems give easily-obtained new results for nonstationary channels. In this
case, RN = I+S; since S is diagonal, the eigenvalues of In + Sn are (ai).

1 { n, where I+S = diag[al.a2....]. The spectral limit points {61 ..... 0.} of

Cod.Cap.of CACs-Liss-36 - 10/9/89 - 19
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I+S are the limit points of the eigenvalues (ai) of RN' These limit points
and theii ‘relative frequencies"” completely characterize the capacity for this
simple channel, whereas in the general case the family of distribution
functions (Fn) can converge to a distribution function with points of increase
at points that are not limit points of the spectrum of I + S. For the
stationary memoryless discrete-time channel with RW = I and RN = 021, 02 is
the only limit point of I + S, and so by Prop. 2 one obtains the well-known

result that C;(P) =3 log[l + 25]_ This is also the value of C;(P) if Rw =1
o

and RN =0 I + M, where M is any operator in H such that M is compact. This
follows from the fact that compact operators in a Hilbert space are exactly
those operatcrz that have zero as the only limit point of their spectrum.

Thus, 1f the noise is of the form N = N1 + N,, N, stationary and uncorrelated

2' 1

with variance 02. and N2 independent of N1 with gz[nz xﬁ] ¢ @, then the coding
21

capacity is again 3 log[l + £§]_ Of course, we are assuming as always that all
g

processes have zero mean.

These remarks follow from the following result.

Prop. 4. Let H = ¢ Hn = {x: X = 0 for i 2 u}. RW = I, and

2.
RN = diag[ai. i 2 1]. Suppose that My is Gaussian and that (oi) has the

limit points 61 < 92 ... < BK. Then
Cy(P) = Tim 2 [——]
n Jj=1

where 13 = M/n, H? is the number of elements in the sequence (ai. i < n)

J

belonging to (Bj-e. 0.,+e), € > O satisfies 2¢ < min{9j+1—9.: j 2 o0.

J J
6, = 0}. (B) is defined by P = 2§=1*§(Bn - 8,). and J is the largest

integer ¢ K such that
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P)Tim 3 ‘7?(9J - 8,).

n 1]
If lim 1? = 7y exists for 1 {( J with J as defined below, then
n—»°
J
Cp(P) = % 3 v, log[g—]
i=1 i
where J and B are defined by P = Egzlvj(B - GJ). with BJ the largest
element of {81.....9K} satisfying P 2 ET=171(GJ - 91).

Proof. Direct application of the theorems.

The case where (an) has an infinite set of liwmil points is presumably of
marginal interest; the capacity in that case is less easy to visualize, but is
also obtained immediately from the theorems.

Heuristically. one can view this channel as equivalent to K parallel
independent discrete—-time memoryless channels. The kth channel has non-zero
noise components only for those indices j such that Ia‘j ~ Bkl { e. For fixed
n, a code word for the composite channel is then given by y = (yl.y2,...,yK),
where Y is the component of the code word for the kth channel and must

2

satisfy y, = 0 1f lo, - 8| 2 e. v, =01f § > n. while ;{zlzplykj < nP.

J
The effect of Prop. 4 is then to replace the original channel by K

parallel independent channels, the kth channel being a memoryless stationary
channel with noise variance ek. The coder then uses the K channels according
to the probability distributions (1?). the (91). and P.

Using this viewpoint, the results of Prop. 4 then show that the coder
chooses his code word as j = (yl,yz.....yK). where Yy is the component of the
code word that is used as an input to the kth channel. For fixed n, he

chooses the code word y according to the constraint % bk 2 < 7E(Bn -8

.y ).
j=1 kJ k
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k<J withy, =04if j>nor Jo, -8 | 2e. and 3 y> =0, k > J. In the
n _ . 1 2
case where lim v, = v, exists for k ¢ J. this gives the constraint = st y <
k k n “j=1"k,
n—e J
v (B-6) k<J = y2 =0, k>J whereB:[P+r}1 v 8 173 v . The
k k'’ =Yt 7=t kj ) ’ =1 k k=" “j=1j°
J

capacity is then C;(P) =2 1JC§(P), where C?(P) is the capacity of the jth

Jj=1
channel subject to the above constraint.

If the sequence of noise variances (ai. i 2 1) consists only of numbers
in the finite set {91. i < K}. then Prop. 4 shows that even for a noise
variance 91 that is repeated infinitely often, such a component of the noise
will have no effect on capacity if the relative frequencies (7?) are such that

D e

lim 7? = 0. However, if P is small and a limit point 6i of (ak. k 2 1) is so
n

large that it does not appear in the expression for capacity (i.e., i > J as
given in Prop. 4), then this limit point may still affect the capacity if

lim w? > 0, and will always affect capacity i{f liminf 7? > 0. This may be
n n

viewed as somewhat unexpected, since such a 6i would represent one of the "K
parallel channels” for which the effective input is zero. However, this is a
point where the heuristic "parallel]l channel” analogy breaks down; this is due

to the fact that the "ith

channel™ is present for a fraction v? of the
available time, n, and the coder is defining capacity in terms of transmission
time (i.e., part of the allowable dimensionality is being used by a "channel"”
which conveys no information).

Prop. 4 (and the theorems, for more general channels) has obvious
applicaiicnes to some multiuser channels. For example, consider a time-
division multiaccess Gaussian channel defined as follows. There are K
sources. For transmission up to time t = n, with n 2 1, the jth source uses
the channel a fraction 7? = n(j)/n of the time. The noise added to the code

n

word of the Jth source has variance BJ (for the n(J)th transmission by the jth
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source) when the overall transmission time is n. The sources have the overall
constraint % 2§=lz?ii)y§i { P for each n 2 1. Prop. 4 then shows how the
available power should be allocated among the K sources, and gives the
capacity. Examples of such channels include that defined by an earth-orbiting
satellite with K widely-separated ground-based transmitters, or a channel
where K sources feed into a central relay station.

This example is for a very simple case of multiaccess channels. More
general problems can be analyzed. However, the basic idea is the same; one
identifies a source {or group ol sources) with a limit point (or set of limit
points) in o(S), and the corresponding (1?). n 2 1, is the fraction of time
the source uses the channel up to time n. This is for the memoryless
discrete-time channei; the theorems can be used to analyze more general
channels. A particular aspect of this model is that the fraction of time that
each source uses the channel can vary with time; similarly for the noise
environment faced by each source.

One can also use Prop. 4 (and the theorems) to analyze jamming channels.
For example, if a jammer must vary his energy over different time periods,
Prop. 4 will permit the calculation of capacity for a given set of {v.6.P}.
More generally, as will be discussed elsewhere, the theorems permit one to
determine the jammer's minimax strategy. subject to various types of
constraints on the jamﬁing signal.

It can be seen that the best choice of (Hn) from the viewpoint of
maximizing capacity will be the natural choice Hn = {x: x, =0, i > n} only in

i

special situations. If 9l < 92 < ... K< BK are the limit points of the noise

variances, and My is Gaussian, then an optimum choice of (Hn) is given by

H = A MB, where
n n

An = {x: x, = 0. 1 > k(n)}.
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=
1

{x: x, =0, Ia1 - Gll 2 €},

i
k(n) = smallest integer such that Iai - Bll < e for exactly n values
of i £ k(n).
and
e < 92 - 91,

This definition of (Hn) gives
0
Cy(P) = % log{1 + P/Gl].

which is the maximum possible value for a given S. Of course, this squares
perfectly with intuition: the original channel 1is transformed into a "channel’
having limiting noise variance 91. at the expense of increasing the
transmission time required to achieve a specified decoding error.

The choice of Hn = {x: X, = 0, 1 > n} gives the optimum (Hn) when by is
Gaussian if and only if limsup 1? = 1. Thus, if choice of (Hn) is part of the
n

system design, then it is only in this case that the capacity is equal to that
which is obtained in the classical Gaussian channel. Conversely., the
classical channel gives the worst possible choice of (Hn) if and only if

lim 7? =0 for all 1 { K-1. For example, consider a channel with noise

n

variances (ai) given as follows:

ay 2 1= j2, J any integer

2000 otherwise.

Then 91 = 2, 92 = 2000; if (Hn) is defined by Hn = {x: X, = 0. i > n}., then

lim 7? = 0, so that C;(P) = 0. However, consider (Hn) def ined by

H = {x: X, = 0, 1> n2) N B, where

B={x: x, =0, { # J2 for any integer j}
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If HN is Gaussian, then this is an optimum choice of (Hn) and gives
C;(P) = % log[l + P/2]. One should notice the differences in definition of
capacity. However, examples that are even more striking can be constructed

for channels with memory; it is possible to use a code word set of arbitrarily

large cardinality with maximum decoding error going to zern as transmission
time n = ©, even though the classical channel has zero capacity. This can be
seen from Theorem 1.

In the above analyses, the cost of transmission time is not quantified.
In the classical channel, one is implicitly assuming that transmission time
must be minimized for a code word set of dimension n. The formulation given
here permits one to remove this constraint. When N is Gaussian, Theorem 2
can be used to determine tradeoffs between the transmission time, maximum
decoding error, and cardinality of the code word set, for each n, for various
choices of (Hn)'

As a final remark on the memoryless channel, one may note that for the
stationary nonGaussian channel with noise variance 02. Shannon obtained the

result [18] that for Rw =1I,

lim L 3(nP) ¢ C(P.C) + % 1og £2(C)72H(N)

ne

where G is the zero—mean Gaussian random variable with variance 02. C(P.G) is
the capacity when G is the noise, and H denotes differentiul entropy. As

previously seen,

L2H(G)-2H(N) _

% log H(N) = :)—HEN(N):

here HG(N) denotes the relative entropy of the random variable N to the r.v.
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G: the last equality follows by the channel being memoryless.

The theorems also permit an immediate calculation of the known result for
capacity of the stationary discrete-time channel with memory when a simple

energy constraint is used.

Prop. 5. Let H = 82, RW = I, and Hn = {x in 82: X, = 0, 1 > n}, with RN

given by a spectral density ¢. Then, if lim % HgN(N) =
n

B
— ]
Tim — CO(nP) = % log ———{dx

where Bo satisfies

1
P=5x=J [B. - &(x)]dx.
2T (ks o(x)$B)

For this application, the distribution function F is defined by 2#F(x) =

m{y: ¢(y) € x}, where m is Lebesgue measure cn [-w,7].

Proof. In this case, P_ = V_, so
—_— n n
Gn(x) = %{number of eigenvalues of ﬁn(I+S)$n <N+ 1}

Now. by the Toeplitz distribution theorem [12]

1 1
lim G (A) =5=J 1 ($(x))dx = 5= m{x: ¥(x) < A},
n 2w [0.2) 2r
when m is Lebesguzs measure, and the result follows from Theorem 1. s}

Bounds on capacity of this channel can also be given. Suppose that

m<(x) M |x| (¥ If Tmrl—‘ua‘(r«) = 0, then % 10g[1 + -;-] <
n

lim = C;(nP) { % log[l + —]" For My Gaussian, the fact that lim — CQ(nP)
n n
' 4

w
5,1- f [0'3](45(7\)) log[—¢(§)]dk with P = —2% {'I[O,B](q’()\))[a - ®(A)]d\ has been
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known/assumed for many years. It is credited to Pinsker under the assumption

of a stationary Gaussian signal [15]. However, it is apparently only recently
that a complete proof has been given allowing a general nonstationary signal
process [15]. In [15], it is assumed that ¢ is continuous; that assumption is

not needed here.

Applications: Continuous-Time Channels of Fixed Duration

In this section the code words and noise paths are elements of L2[O.T].
where T < ®» is fixed. The available energy per transmitted code word is PO:
for each fixed n and a given (Hn) and RW' one has Hx"%.n < PO for each code
word x. The question is whether or not arbitrarily small maximum decoding
e-ror probability can be achieved by making PO arbitrarily large without
limiting the cardinality of the code word set. It can be assumed that
limiting the cardinality of the code word set is equivalent to limiting its
dimensionality.

This problem is fundamentally different from that of the classical
continuous-time channel, wherein the code words are limited to an energy of TP
and T is permitted to become arbitrarily large. In the present case, for a
fixed value of Po. one can set Po = nP. Theorem 2 can then be used to
determine an upper bound on the maximum decoding error probability. Of
course, this requires that the eigenvalues (B?) be determined for sufficiently
many values of n, so that the expressions given in Theorem 2 can be evaluated.
For a given value of PO = nP, one then determines B[n,p] for suitable values
of p (p in (0,1)) and chooses the values of n and p that give the most
satisfactory compromise between the size of the code word set and the maximum

decoding error probability.

In the balance of this section, attention will be focused on determining
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capacity. As previously discussed, a "rate” is the rate of increase in

log[cardinality of the code word set] as a function of increasing

dimensionality. R is then an admissible rate if the maximum decoding error
can be made arbitrarily small by indefinitely increasing log[cardinality of
the code word set] at the rate R. From Theorem 2, if oy is Gaussian and the
capacity is zero, then the maximum probability of decoding error converges to
one as the cardinality of the code word set becomes arbitrarily large, for any
positive rate. We begin with an example illustrating this situation.

Let H = L2[O.T] and suppose that (Nt) has covariance operator having an
inverse which is a densely-defined differential operator of order 2p. For
example, if p = 1, N could have covariance function e—a(t—s) (¢ > 0) or
min(t,s). Let Rw be an integral operator whose inverse is a densely-defined
differential operator of order 2 4p. Thus, if p =1, Rw could be defined by a
covariance function corresponding to a spectral density which behaves, for
[A] » », as Py(A) = 1A%, where k 2 1. Then, if (N ) is Gaussian, or more

generally when lim %-HEN(N) = O, the capacity is zero, regardless of the
n

definition of the subspaces (Hn). This result follows from the fact that
RN = R3(1+S)R§. where I+S is the inverse of a compact operator, thus has a
single limit point in its spectrum, equal to +®.

Some stationary channels with rational spectral densities defining both
RN and Rw constitute a special case of the above example. A complete set of
results can be given for all stationary channels where RN and Rw are defined

by rational spectral densities.

Prop. 6. Suppose that H = L2[O.T]. Let (Nt) be stationary and Gaussian
with rational spectral density ¢, , and suppose that Rw is defined by a

rational spectral density ¢w. Then, for any choice of (Hn):
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a) the coding capacity will be non-zero if and only if

1 M) >0
NN R

b) the capacity is given by C;(P) = % log[l + aP].

This also gives an upper bound on the coding capacity if N is nonGaussian
and the following conditions are satisfied: (Nt) = (Gt + Vt) where (Gt)
is stationary and Gaussian with rational spectral density ¢., (Vt) is

independent of (Gt)' possibly nonGaussian, stationary or nonstationary,

o |v(a) |2
and such that E J_ 3 d\ < @ for the sample paths v of (V ), where
~ G(A) . t
v is the Fourier transform of v. Then, CW(P) = Y% log[l + P lim —————].
INERCR

Proof. When Rw and RN are defined by rational spectral densities ¢w and ¢N'
then it can be shown from well-known results [2], [13] that Rw = R:(I+V)R: .
' where the operator V has the following properties:
a) V is bounded if and only if {® (A)/$(7), IA] > 0} is bounded;
b} if ¢V/¢N is integrable over (—»,®»), then I+V is trace-class;
c) if V is bounded and

9, (A)

lim ———— = a,
3N

A [0
then I+V has a single limit point for its spectrum, equal to «.
Using these facts, one notes that since RN = R3(1+V)-1R$ = Ré(I+S)R$. S must
be unbounded with the single limit point +» if ¢w/¢N is integrable (since I+V
has only zero as a limit point). By Theorem 1 and Prop. 2, C:(P) is then
zero. If I+V has a as its only limit point, then I + S = (I-G»V)-1 must have

a—1 as its only limit point (note that I+V) + (1-a)I = V - al is compact); (b)
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of Prop. 6 follows. The remainder of Prop. 6 can be obtained from the results

of [13]. s]

As can be seen, there is no "waterfilling” aspect to the statement of
Prop. 6. This is because the operator S has only a single limit point in its
spectrum if H = L2[0.T] and Rw and RN are defined by rational spectral
densities. The waterfilling interpretation can be applied to Theorem 1; it is
in terms of the family of pure jump distribution functions (Fn). which is
determined from V[S.(Hn)]. It is notable that the results of Prop. 6 are
independent of the value of T.

From (a® of Prop. 6, C;(P) = 0 if ¢w/¢N is integrable. This is the class
of channels considered in the Holsinger—Gallager result for the classical
continuous-time channel [11, Sec. 8.5], T » ®. It may be judged only natural

that C;(P) =0 if T is fixed., since }Tﬁ'%-C;(TP) is finite, where C;(TP) is
-0

the capacity for the channel restricted to the interval [0.T] and with the

constraint g"XH% T ¢ PT. Since the dimensionality is not constrained in

computing C;(TP). C;(TP) 2 C;(nP) when T = n. Moreover, when T is fixed, the
1
capacity is determined in terms of (;-C;(nP)). However, if Rw and RN are

¢, (\)

given by rational spectral densities such that lim EETXT is finite and
N

A ]

non-zero, then the capacity is finite and non-zero for both the classical
channel {7] and {(by Prop. 6) the fixed-time channel.

Another result along these lines is the following.

1
HEN(N) = 0, that {un. n 2 1} is complete,

Prop. 7. Suppose that lim n
n

and that Hy is the zero-mean Gaussian probability with Rw as covariance.

Then, lim %-C;(nP) = % log[1+P] if Hy is absolutely continuous w.r.t.
n
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(with respect to) - More generally, lim %-Cs(nP) = % log[l + ngj if
n

there exists a constant a ¢ 1 such that R: = RN + aRw is strictly

positive definite and Hy and ug’a are mutually absolutely continuous,

G,a

where MN is the zero-mean Gaussian probability with covariance operator

a

RN.

Proof. 1If Hy ~ ug'a. then RN + aRw
Ry = Ry(I + [T-al])Ry: since T - al

o(S). the result follows. Note that a ( 1 is necessary because I + T - al

RG(I+T)R)S. T Hilbert-Schmidt, so that

S has -a as the only limit point of

must be non-negative, requiring T 2 (a-1)I Since T is compact, this can hold
ocnly for a { 1, and the case a = 1 violates the basic (and necessary, for
finite capacity) assumption that RN = R¢(I+S)R;% with (I+S)-1 bounded. For,
if @ = 1, then Ry + aRy = R + RyTRy and T Hilbert-Schmidt implies that

Ry = R4TR,®. and T™! cannot be bounded. o

The coding capacity of the matched channel (Rw = RN) is % log(1+P).
Thus, if Hy ~ Moy then the difference between the two operators RW and RN is
not sufficient to affect the coding capacity. However, if My 1 Hon® then one
still obtains finite capacity under the assumptions of Prop. 7, but its value
can be greater or smaller than that of the matched channel.

Prop. 8. Suppose that TT:E%H&(N) = 0. In order that Cy(P) be more
n

than zero, it is necessary that Rw = R:TR: with T bounded but not

compact.

Prop. 8 follows immediately from the preceding. (I+S)-1 =T, so that T
compact implies that (I+S) has +» as the only limit point of its spectrum.

This is actually the situation that holds in the Holsinger—-Gallager model.
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The key to interpreting these results lies in the expressions for
information capacity when HN is Gaussian [5]. When S has a single limit point
equal to +» (as in the case of Example 2 and in Prop. 6 when ¢w/¢N is

integrable), then S has a OONS of eigenvectors and corresponding eigenvalues

(Ai). ki 7 ®, With no dimensionality constraint on the transmitted signal
process, Theorem 3 and Corollary 4 of [5] show that the optimum signal process
(for achieving information capacity) has finite-dimensional support when
PO = nP is fixed.

It then follows that increasing the dimensionality of the signal space

past the optimum value actually decreases information capacity. This is

consistent with lim %-C;(nP) = O for any fixed value of P.

n—o
However, when the smallest limit point 8 of S is finite, then for a
K
sufficiently large value of PO = nP, one will have Po + 3 Ai 2 KB, where now
i=1

(Ai) denotes those (increasing) eigenvalues of S strictly less than 8.
Theorem 2c of [5] then applies, setting the dimensionality as n = M. Let
K = min(L,M). where L is the number of eigenvalues of S strictly less than 8.
Then, permitting HH to be any M-dimensional subspace, one has [5]

K
P0 + 3 (Ai—B)

K
140 M i=1
R(Py) = saizllog[-——m\i + log[l ¢ T

with the constraint given by E "x"2 { P.,. Since P, = MP, taking M = @ gives
iy w 0 0
1 P
limi (HP):%logl+T+—e.
Mo
Of course, this is an upper bound for the coding capacity, in general,
since (H") can be any sequence such that HK is M~dimensional, including

sequences that are not ordered by inclusion. However, if S has only one limit

point 6 in its spectrum (as in Prop. 6 when Ow(k)/¢N(A) 2 a # 0) then
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% log[l + ng is in fact the coding capacity, as has been seen from the
corollary to Theorem 1.

The preceding results thus enable one to determine whether or not
arbitrarily small error probability can be achieved while indefinitely
increasing the log of the cardinality of the code word set at some positive
rate, and give the capacity. As discussed, the capacity in this framework is

the supremum of all admissible rates, and the "rate” is defined as [log kn]/n.
where n is the dimensionality of the code word set and kn is the number of

code words.
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